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Abstract. Non-equilibrium phenomena occur not only in the physical world, but also in finance. In this
work, stochastic relaxational dynamics (together with path integrals) is applied to option pricing theory.
Equilibrium in financial markets is defined as the absence of arbitrage, i.e. profits “for nothing”. A recently
proposed model (by Ilinski et al.) considers fluctuations around this equilibrium state by introducing a
relaxational dynamics with random noise for intermediate deviations called “virtual” arbitrage returns. In
this work, the model is incorporated within a martingale pricing method for derivatives on securities (e.g.
stocks) in incomplete markets using a mapping to option pricing theory with stochastic interest rates. The
arbitrage return is considered as a component of a fictitious short-term interest rate in a virtual world. The
influence of intermediate arbitrage returns on the price of derivatives in the real world can be recovered by
performing an average over the (non-observable) arbitrage return at the time of pricing. Using a famous
result by Merton and with some help from the path integral method, exact pricing formulas for European
call and put options under the influence of virtual arbitrage returns (or intermediate deviations from
economic equilibrium) are derived where only the final integration over initial arbitrage returns needs to
be performed numerically. This result, which has not been given previously and is at variance with results
stated by Ilinski et al., is complemented by a discussion of the hedging strategy associated to a derivative,
which replicates the final payoff but turns out to be not self-financing in the real world, but self-financing
when summed over the derivative’s remaining life time. Numerical examples are given which underline the
fact that an additional positive risk premium (with respect to the Black-Scholes values) is found reflecting
extra hedging costs due to intermediate deviations from economic equilibrium.

PACS. 02.50.Ey Stochastic processes – 05.40.Jc Brownian motion – 89.90.+n Other topics of general
interest to physicists (restricted to new topics in section 89)

1 Introduction

The pricing and hedging of derivatives is a major task for
financial institutions [23] and has become an increasingly
popular topic in statistical physics [13,15]. Derivatives are
sometimes also called contingent claims, as the buyer of
the derivatives is entitled to receive a certain payoff up to
(or at) some future time T , the time of expiry, dependent
on the price S of a so-called “underlying” security (say a
stock) within a certain time interval between today and T
or at time T . The simplest case is a so-called European call
(put) option which gives the buyer the right to buy (sell)
an underlying security (e.g. a stock) at a certain time T
in the future for a fixed price K (the strike price). These
options are also called “plain vanilla options” for their
simplicity (as common as the vanilla ice cream flavor).

The classical result of Black and Scholes [1] on op-
tion pricing which revolutionized the world of finance and
still forms the foundation for most of modern research, is
based on the existence of an equilibrium, generally called
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“absence of arbitrage”, i.e. the impossibility of a profit
“for nothing”.

The use of the no-arbitrage assumption for pricing
purposes is nicely elucidated in a standard text book
like [23] where simple pricing equations for forward con-
tracts are derived from optimization arguments. If e.g. the
forward price F at time t for buying or selling (assum-
ing no bid/offer spreads and transactions costs) a non-
dividend paying security S at a later time T were less
than S exp(r(T − t)), then a riskless profit could be ob-
tained in the following way: at time t, one enters into a
forward contract to buy the security for F at time T , and
one short sells the security (i.e. one borrows the security
from somebody else and sells it, assuming no fees for sim-
plicity) and puts the proceeds on a deposit at the riskless
interest rate r (assuming no credit risk); at time T , one
receives the security from the forward contract thereby
closing out the short position in the security (i.e. handing
it over to the lender), while receiving the nominal amount
plus interest from the deposit less the forward price paid:
S exp(r(T − t))−F > 0. Likewise, an arbitrage is possible



384 The European Physical Journal B

when F > S exp(r(T − t)). As the information on either
situation spreads in the market, the inequalities disappear,
and the relation F = S exp(r(T − t)) results. Now the no-
arbitrage assumption anticipates the equality to hold right
from the beginning, thus implying that arbitrage oppor-
tunities disappear infinitely fast. Now many trading ac-
tivities are motivated exactly by the fact, that this is not
the case, but that arbitrage returns exist in the market
for a short time τarbitrage > 0. After this time, the in-
formation on arbitrage opportunities has reached enough
market participants to make them disappear.

The absence of arbitrage assumption paves the way
for one of the fundamental pillars of mathematical finance
which is the theorem by Harrison and Pliska [12]. In fact
whenever markets are complete (i.e. when any deriva-
tive can be hedged by a self-financing strategy, which is
a more restrictive statement than absence of arbitrage),
then there is a unique equivalent martingale measure for
the underlying security and vice versa (see [25] for an in-
troductory discussion on martingale theory). A stochastic
process Xt is a martingale with respect to the measure Q
if and only if EQ [|Xt|] <∞

Xt = EQ [Xs|Ft] , s ≥ t (1)

where Ft is the filtration at time t, i.e. the information
accumulated until time t. This rather technical statement
is the basis for risk-neutral valuation: Derivatives can be
priced in a world where all yields are equal to the risk-free
interest rate (minus dividend yields etc.).

Apart from the dynamic deviations from the no-
arbitrage situation discussed above, there is a large lit-
erature on serious drawbacks of the Black-Scholes model
itself which is classically used to implement no-arbitrage
pricing of options, i.e. that price returns evolve accord-
ing to Brownian motion with constant drift and volatil-
ity. Empirical studies of return distributions in fact show
volatility clustering and fat tails [4,5,7,14], and so real
price changes appear to be more efficiently modelled by
truncated Lévy processes (TLP) [5,6]. However, rational
option pricing using the martingale approach appears to
be still working (see [8] and Refs. therein), so the main
theme of the Black-Scholes method, i.e. the possibility to
set up a self-financing hedging strategy (a notion to be
explained below) seems to hold. Moreover, studies on au-
tocorrelations of price changes or on the distributions of
price changes themselves (taken for different time scales)
demonstrate a crossover to Gaussian dynamics after a cer-
tain time scale which might vary from several minutes to
days (depending on market liquidity) [7,14].

In the present work, this time scale is proposed to be
proportional to τarbitrage. In this sense, fat tails of distri-
butions of price changes are a signature of intermediate
arbitrage opportunities on short time scales (compared
to τarbitrage). The implications for pricing options that are
not very short-lived seem to be that intermediate arbitrage
opportunities may be modelled as deviations from Brow-
nian motion, and thus as perturbative effects. One way to
treat these deviations are stochastic volatility (SV) mod-
els (see for a review in the context of option pricing [9]).

The present work complements these models and gives an
alternative approach which modifies the drift of the asset
price process rather than its volatility.

If one tries to get rid of the drawbacks of the Black-
Scholes model by dynamic parameters which are not di-
rectly tradable such as in SV models or in the approach
discussed below, one encounters a new problem: as op-
posed to complete markets defined above, a self-financing
strategy using traded instruments ceases to exist. In gen-
eral, any hedging strategy can only reduce the risk in-
herent in the final payoff to an intrinsic component [2,13].
Technically, this leads to more than one equivalent martin-
gale measure [12]. Ambiguity for derivatives pricing is han-
dled by introducing additional constraints on the hedging
strategy, e.g. minimizing the expected squared cost for
the remaining life time of the option while exactly repli-
cating the final payoff (local risk-minimization) or mini-
mizing the expected squared net loss at the time of ma-
turity of the option (mean-variance hedging) [2,3,16] (see
also [13,15] for a physicist’s approach). For the model pre-
sented in this work, a very specific method is proposed in
order to select an equivalent martingale measure which
satisfies both constraints simultaneously.

The issue of option pricing in incomplete markets has
become a matter of practical interest recently, in partic-
ular with the increasing importance of credit derivatives.
As opposed to conventional derivatives which cover mar-
ket risks, there is not a large underlying market of actively
traded credit risk instruments in every credit risk category.
As opposed to a stock, e.g. a loan is usually not traded.

Considering fully complete and incomplete markets as
extreme cases of real markets, one is naturally forced to
ask for crossover effects or transitions between the two
regimes. A possible answer to this question might be given
in terms of a dynamic model which considers market in-
completeness in terms of fluctuations around an economic
equilibrium characterizing a complete market.

An important step in this direction has been given by
Ilinski and Stepanenko [10] and Ilinski [11] who assume
the existence of intermediate, “virtual” arbitrage returns
xt, which appear and disappear over a certain time scale
which may be identified with τarbitrage mentioned above. In
fact, Ilinski et al. intend to treat arbitrage effects as a per-
turbation to the usual Black-Scholes risk-free rate r, which
gives the yield on all investments in a risk-neutral world.
More specifically, the Black-Scholes risk-free rate is split
into a constant part r0 and an arbitrage return xt accord-
ing to rt = r0 +xt. This model is different from stochastic
volatility models: it modifies the (risk-adjusted) drift of
the asset price process rather than its volatility. In prin-
ciple there appears no reason to favor one approach over
the other. In fact, preliminary results from simulations of
the stochastic drift model versus the stochastic volatility
model by Stein & Stein [17] seem to point in this direction.
Detailed results on this comparison will be published else-
where [21]. The stochastic drift approach discussed here
has the advantage that it can be mapped to models with
stochastic interest rates (see below).
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Ilinski et al. [10,11] present two approaches to calcu-
late option prices. In [10], a perturbative method is given
based on the classical Black-Scholes equation where the
constant risk-free rate r is replaced by r0 +xt where r0 is
constant and xt is random. This equation is then iterated
to second order in xt and averaged over with respect to xt.
The results obtained for European call and put options are
not reproduced by our exact calculation. We come back
to this difference at the end of Section 5 which explains
why our results are reasonable for the specific dynamics
of the arbitrage return used here. The observed difference
just mentioned leads us to suggest that either the method
or some further approximations made in [10] are not cor-
rect. In a second paper [11] Ilinski et al. derive a fully
deterministic Black-Scholes type PDE that depends both
on the current level of the security price St and the arbi-
trage return xt. This equation is not further evaluated. In
Section 3, we show that it contains a misprint. We add as
a remark that the issue of measure change and the con-
struction and selection of an equivalent martingale mea-
sure which is fundamental to option pricing (see e.g. [25])
is not addressed.

Therefore, in this article a different route is proposed.
First, the arbitrage return xt is considered as a part of
a stochastic interest rate dynamics for the risk-free rate
rt in a virtual world (where arbitrage returns are directly
observable). Essentially, one is led to a Black-Scholes type
equation for a derivative depending on two state variables,
the security price St and the arbitrage return xt which is
derived from the risk-free rate in the virtual world accord-
ing to rt = r0 + xt. The constant part r0 is supposed to
be the risk-free rate in the real world which consequently
is assumed to be constant. The reason for the latter sim-
plification is the later comparison with the Black-Scholes
pricing formulas. The implementation of xt as a part of a
fictitious interest rate process leads to a stochastic drift for
the asset process St (with respect to the particular mar-
tingale measure chosen, for details see below) and thus
couples the dynamics of xt to St. As the arbitrage re-
turn is an intermediate phenomenon on time scales shorter
than the time to expiry, we follow Ilinski et al. by enforc-
ing the boundary condition at the time of expiry of the
option that the arbitrage return should disappear. This
constraint may be relaxed, however, if one allows for the
possibility that any hedging strategy might not replicate
(i.e. provide for) the final payoff of the option. Nonethe-
less, we stay with this constraint (also in order to compare
with the results of Ilinski et al. [10,11]). However, we do
not implement this condition into the payoff function of
the option like Ilinski [11], but into the average over ar-
bitrage returns. This procedure allows us to use a famous
result by Merton on options in a stochastic interest rate
environment [26]. It is not meant to imply that interme-
diate arbitrage returns can be thought of as the random
part of real interest rates. After averaging, we obtain a pre-
viously unknown exact result for European claims under
the influence of virtual arbitrage. (The pricing of Ameri-
can claims which may be exercised prior to their maturity
is possible in principle using a “tree” procedure [23], i.e. a

scheme based on discrete probabilities and discrete time).
These exact pricing formulas differ significantly from the
results obtained by Ilinski et al. [10].

The outline of this paper is as follows: In the next sec-
tion, we present the route from the Black-Scholes model
to a non-equilibrium market model, taking up the idea of
intermediate (“virtual”) arbitrage by Ilinski and Stepa-
nenko. The third section will show how the effect of arbi-
trage returns on option pricing can be considered in terms
of a stochastic interest rate environment in a virtual world.
In Section 4, European call and put options are valued in
the presence of virtual arbitrage returns. In Section 5, the
issue of a replicating hedging strategy both in the virtual
and real world and the selection of an equivalent martin-
gale measure is addressed. Some explicit numerical pric-
ing examples are given and their difference to the classical
Black-Scholes results are explained in Section 6. In the
final section, the results are briefly discussed.

2 From the Black-Scholes model
to the dynamics of arbitrage returns

Let us briefly review the Black-Scholes analysis in order
to motivate the notion of arbitrage returns, following [10].
The model for a one security market is given by

dSt = µStdt+ σStdW 1
t (2)

where St is the security price, µ the drift, and dW 1
t a

Wiener process. It may be motivated from the fact that
ln(Si+1/Si), where i + 1 and i denote discrete points in
time, performs a random walk [23]. Now the price of a
derivative Vt = V (St, t) whose payoff is contingent on the
security price ST at some future time T can be determined
by setting up a portfolio Πt consisting of the derivative Vt
and a position −∆ of the security St:

Πt = Vt −∆St. (3)

Then if ∆ = ∂V
∂S , where S = St, this portfolio is riskless

as uncertainties arising from the Wiener process are elim-
inated which can be seen by evaluating dΠt using Ito’s
lemma. Therefore, the portfolio is known to grow at the
risk-free rate, i.e.

dΠt = rΠtdt (4)

For constant interest rates, equating expressions for
dΠt gives the Black-Scholes partial differential equation
(PDE):

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5)

Specifying a certain boundary condition to this equation
representing the option payoff at the time of maturity
completes the usual Black-Scholes pricing problem. As a
reminder, let us note that the drift µ which was intro-
duced in the market model equation (2) is absent from
the pricing equation (5).
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The idea of arbitrage returns may be motivated by
assuming that in the presence of arbitrage opportunities,
the true return of the portfolio Πt is not equal to the
constant risk-free interest rate r, but might be less or more
than that. Following [11], an arbitrage return xt is now
introduced by substituting for r

rt = r0 + xt (6)

where xt is assumed to follow the dynamics of a decay
process with random noise:

dxt
dt

= −λxt + ηt (7)

where ηt is characterized by:

〈ηt〉 = 0, 〈ηtηt′〉 = Σ2δ(t− t′). (8)

As to the nature of ηt further complications are discussed
in [10], but they are not important for our analysis. Ba-
sically, a stochastic component xt as been added to the
constant risk-free rate r0. The question now is: How does
the process for the arbitrage return xt affect the price of
a derivative?

Substituting equation (6) for risk-free rate r in the
standard Black-Scholes PDE, Ilinski and Stepanenko sim-
ply proceed and derive the following PDE:

LBSV = xt

(
V − S ∂V

∂S

)
(9)

where LBS is the operator from the standard Black-Scholes
PDE, LBSV = 0, for r = r0. We will clarify below that
the replacement r → r0 +xt in fact is equivalent to intro-
ducing an interest rate process rt = r0 + xt in a virtual
world where tradable instruments dependent on this in-
terest rate exist.

The specific origin of intermediate arbitrage returns
and market incompleteness is assumed to be contained in
the parameters λ which sets the time scale for deviations
from market equilibrium and Σ which gives a measure for
the arbitrage returns themselves. Specific values are dis-
cussed in Section 6. Of course, in reality transaction costs
which are neglected here for simplicity might effectively
destroy small arbitrage returns.

In the next section, a different approach is presented
in the framework of standard option pricing theory which
allows to study the influence of intermediate deviations
from financial equilibrium (as defined by the no-arbitrage
assumption) on derivative pricing.

3 Derivatives in the presence of arbitrage
opportunities: A mapping to option pricing
theory with stochastic interest rates

The way the arbitrage return xt has been introduced in the
last section, in particular that the portfolio Πt grows at
the rate r0+xt, allows for a mapping to option pricing the-
ory with stochastic interest rates. We will call rt = r0 +xt

an interest rate in a virtual world, but do not insinuate
that the arbitrage return is a part of the real interest rate.
This virtual world will serve as a stage where known re-
sults can be used, but finally these results need to be pro-
jected to the real world. Let us for the moment assume,
that this virtual world can be set up. The justification for
its use will be delayed to Section 5.

Let us first review the PDE approach to option pricing
with stochastic interest rates. The stochastic nature of a
(short) interest rate rt is usually taken into account by
stating a stochastic differential equation (SDE) as follows:

drt = ρ(rt, t)dt+Σ(rt, t)dW 2
t . (10)

The parameters ρ and Σ specify drift and volatility re-
spectively, and may depend on rt and t. The drift speci-
fies the deterministic (“trend”) component of the interest
rate dynamics whereas the volatility describes the stochas-
tic fluctuations. The increment dW 2

t is a Wiener process.
The general PDE for a derivative V = V (S, r, t) depen-
dent on S = St and r = rt can be found in the litera-
ture [23]. Assuming for simplicity no correlations between
the Wiener processes dW 1 from equation (2) and dW 2

and suppressing the functional dependence of Σ and ρ,
the PDE is given by:

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ S

∂V

∂S
(µ− λ1σ)− rV

+
Σ2

2
∂2V

∂r2
+
∂V

∂r
(ρ− λ2Σ) = 0. (11)

The parameters λi, i = 1, 2 are known as the market prices
of risk for the security S and the risk-free rate r. They
can be obtained by finding the change of measure which
makes the respective discounted price process a martin-
gale [25]. For a non-dividend paying security governed by
equation (2), λ1 = (µ−r)/σ. Incidentally, if r is constant,
one recovers the Black-Scholes PDE equation (5). As r is
not a tradable security, a tradable interest rate instrument
is needed, e.g. a zero bond with maturity T whose price at
time t is P (t, T ) and which promises to pay one monetary
unit at time T . In fact, one is left with a residual freedom
of choosing λ2 [24]. We will return to this issue instantly.
Let us now restrict the drift ρr to a mean-reverting form:

ρ = ρ(rt) = a− λrt. (12)

Moreover, let us suppose that Σ(rt, t) = Σ = const. Let
us further assume that

rt = r0 + xt. (13)

Then after transforming from r to x the PDE for the
derivative price V reads as:

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ S

∂V

∂S
(r0 + x)− (r0 + x)V

+
Σ2

2
∂2V

∂x2
+
∂V

∂x
(a− λr0 − λ2Σ − λx) = 0 (14)
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As pointed out in [24], it is not possible to separate the
market price of risk λ2 from the difference ã = a − λ2Σ.
Let us now return to the process for the arbitrage return
xt assumed in the last section, equation (7). Under the
martingale measure for the discounted zero bond price,
the process for xt obtained from equation (10) together
with (12) and (13) using standard techniques [25] is given
by the SDE:

dxt =
(
ã− λr0 − λxt

)
dt+ΣdW̃ 2

t . (15)

The change to a measure W̃ 2
t that makes the discounted

zero bond price a martingale of course amounts to a choice
as there is no such instrument in the real world. This
means that there is no unique martingale measure in terms
of real world instruments so we are necessarily forced to
choose one. One possibility is to require that the pro-
cess equation (15) under the martingale measure is mean-
reverting to zero: deviations from economic equilibrium
should disappear to zero. This means that ã − λr0 = 0,
making equation (15) identical to the corresponding ex-
pression in equation (7).

Then equation (14) has a similar but not the same
form as equation (3) in [11] (the last term should read
−λx∂V∂x instead of +λ∂xV∂x ),

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ S

∂V

∂S
(r0 + x)

− (r0 + x)V +
Σ2

2
∂2V

∂x2
− λx∂V

∂x
= 0 (16)

and the process for the arbitrage return becomes

dxt = −λxtdt+ΣdW̃ 2
t (17)

yielding the consistency of the no-arbitrage approach in
the virtual world with the arbitrage dynamics proposed
in equation (7). The security price dynamics becomes

dSt = (r0 + xt)Stdt+ σStdW̃ 1
t (18)

with respect to the martingale measure. This equation ba-
sically couples arbitrage returns to security price dynam-
ics under the chosen martingale measure. Thus incom-
pleteness is introduced here in terms of stochastic drift
as mentioned above.

Of course, the dynamics of real interest rates are not
the same as the dynamics proposed here for a virtual
world. The relaxational time scale 1/λ originating from
the disappearance of virtual arbitrage returns is much
shorter than a time scale of mean reversion for real in-
terest rates. As will become clear in the next section, our
zero bond price in the virtual world will approach a real
(constant interest rate) bond price in the limit of infinitely
fast relaxation dynamics for the arbitrage return xt. One
might object at this point, that we have assumed a hedg-
ing strategy in the virtual world which does not exist in
the real world (xt cannot be hedged). Indeed, the hedg-
ing strategy in the virtual world expressed in terms of the
security St and a real world cash bond B0

t = exp(−r0t)

leaves us with an extra amount arising from the dynam-
ics of xt, and is therefore not self-financing in terms of
real world instruments. We will address this issue in more
detail in Section 5.

In order to complete the pricing problem in the virtual
world, equation (16) requires the boundary condition, e.g.
for a European claim (which is exercised or not exactly at
time T ). It must be chosen as [11]

V (t, S, r)|t=T = Xδ(x) (19)

where X is the final payoff (in the real world) depending
on S(T ) and r = r0 + x. Then the option price in the
real world may be calculated as an average over the initial
arbitrage return as follows:

V̄ (t, S, r0) =
∫ ∞
−∞

dxV (t, S, r)p̃(x) (20)

where p̃(x) is a probability density function chosen accord-
ing to the dynamics of xt to be discussed below.

However, we will not proceed to solve the PDE,
but remember that according to the Feynman-Kac
lemma [18,19]

V (t, S, r) = EQ

[
e−

R T
t

dsrsXδ(xT )|xt = x, r0, St
]
. (21)

Now it is easy to show (e.g. by using the path integral
approach [20]) that

EQ

[
e−

R T
t

dsrsXδ(xT )|xt = x, r0, St
]

= EQ

[
e−

R
T
t

dsrsX |xt = x, r0, St;xT = 0
]

× p(xT = 0|xt = x, r0, St) (22)

where p(xT = 0|xt = x, r0, St) is the conditional proba-
bility density function for xT = 0 given xt = x,r0,St. The
last equation allows us to utilize results from the literature
on option pricing theory with stochastic interest rates. In
fact, we will solve the pricing problem for the actual pay-
off function X in an interest rate environment where the
short rate process in the virtual world rt starts from r0 +x
at time t and comes back to r0 at the time of maturity T ,
or put otherwise where xt = x and xT = 0.

The average as given in equation (20) will then
be performed in a different way. From the constraint
V̄ (t, S, r0)|t=T = X , it clear that

p̃(x) =
p(x)
p(0)

(23)

where p(x) is the probability density function for the ini-
tial value x of the arbitrage return. Using the fact that in
our case p(xT = 0|xt = x, r0, St) = p(xT = 0|xt = x) and

p(xt = x|xT = 0) = p(xT = 0|xt = x)
p(x)
p(0)

(24)
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one may rewrite the average in equation (20) as follows:

V̄ (t, S, r0) =
∫ ∞
−∞

dxV (t, S, r;xT = 0)p(xt = x|xT = 0)

(25)

where

V (t, S, r;xT =0) = EQ

[
e−

R T
t

dsrsX |xt=x, r0, St;xT = 0
]

(26)

and where p(xt = x|xT = 0) is the conditional probability
density for the arbitrage return at time t to be equal to x
given that its value at T > t, the time of expiry, is zero.
Its explicit form will be discussed in the next section. In
fact, as t = T , one obtains p(xt = x|xT = 0) = δ(x) as
required.

4 Valuation of European call and put options
in the presence of virtual arbitrage
opportunities

Considering the arbitrage return as a part of the stochas-
tic interest rate rt in our virtual world, we can now draw
upon a classical result of Merton [26] in order to derive
formulas for European call and put options. In fact, in-
stead of solving equation (16) together with equation (19)
for X = max(S −K; 0) (or X = max(K − S; 0)) for call
or put options respectively, we consider the security price
dynamics equation (2) together with the following SDE
for the price of a zero bond:

dtP (t, T ) = P (t, T )
(
µP (t, T )dt+ σP (t, T )dW 2

t

)
. (27)

Now assuming that σP (t, T ) is a known function of t and
T , the price of a European call (and put) option c (and
p) at time t which expires at time T with strike price K
is given by [26]:

c = SN(d1)− P (t, T )KN(d2) (28)
p = P (t, T )KN(−d2)− SN(−d1) (29)

where N(x) is the cumulative normal distribution and

d1 =
ln(S/K)− ln(P (t, T )) + σ̂2(T − t)/2

σ̂
√
T − t

d2 = d1 − σ̂
√
T − t

σ̂2(T − t) =
∫ T

t

ds
(
σ2 + σ2

P (s, T )− 2ρSPσσP (s, T )
)
(30)

The parameter σ is the volatility of the security, and ρSP is
the instantaneous correlation between the stock and zero
bond prices which for simplicity we assume to be zero as
above. Let us now connect to the stochastic interest rate
dynamics rt. If the process for P (t, T ) is derived from the
process for rt using Ito’s lemma, one obtains the following

dependence of the bond volatility on the parameters of
the process for rt:

σP (t, T ) = Σ
1

P (t, T )
∂P

∂r
(31)

where Σ is the short rate volatility. For the specific short
rate dynamics chosen in equations (10) and (12), the zero
bond price can be calculated explicitly as a function of t,
T , the current short rate level r and the model param-
eters. Concerning the latter ones, the drift of the short
rate process has to be risk-adjusted by the market price
of risk giving ã as mentioned above. Let us now calculate
the bond price P (t, T ). Using the fact that

P (t, T ) = EQ

[
e−

R
T
t

dsrs |r0
]

= e−r
0(T−t)EQ

[
e−

R T
t

dsxs |xt = x
]

(32)

one obtains from the dynamics of xt equation (17) (after a
tedious calculation given in the Appendix using the path
integral approach [20]) the following result:

P (t, T ) = exp
(
−
(
r0 − Σ2

2λ2

)
(T − t)

− 1
λ

tanh
(
λ(T − t)

2

)(
x+

Σ2

λ2

))
. (33)

Performing the differentiation in equation (31), one
obtains:

σP (t, T ) = −Σ
λ

tanh
(
λ(T − t)

2

)
. (34)

Now, the restriction ã = λr0 which makes the drift of the
process for the arbitrage return xt be equal to−λxt (under
the martingale measure), gives the desired asymptotics of
the zero bond price. In fact, as λ → ∞, which can be
interpreted as an infinitely fast disappearance of virtual
arbitrage returns, it reads as

lim
λ→∞

P (t, T ) = e−r
0(T−t), (35)

the zero bond price for a constant risk-free rate r0. There-
fore the restriction on ã mentioned above, and thus our
choice of the martingale measure is reasonable also from
the viewpoint of correct zero bond price asymptotics. Let
us know turn to the evaluation of the modified security
price volatility σ̂. Evaluating the integral in equation (30),
one obtains:

σ̂2 = σ2 +
Σ2

λ2

(
1− 2

λ(T − t) tanh
(
λ(T − t)

2

))
. (36)

Likewise, in the limit λ→∞, the contribution to virtual
arbitrage returns disappears and one recovers the “bare”
security price volatility:

lim
λ→∞

σ̂ = σ. (37)
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The asymptotic equations equations (35) and (37) assure
that in the case of infinitely fast vanishing arbitrage re-
turns the Black-Scholes formulas (for a constant risk-free
rate r0) are recovered from equation (28). When the op-
tion approaches maturity, there is the following expansion
of σ̂2:

σ̂2 = σ2 +
Σ2

12
(T − t)2 +O

(
(T − t)3

)
. (38)

Now as the option price in our virtual world is fixed in
terms of the parameters of the arbitrage return process,
we need to turn to the explicit evaluation of the average
carried out in equation (25). For an Ornstein-Uhlenbeck
process xt given by equation (17) it is well known [27],
that the transition probability to go from x′ at time 0 to
x at time t is given by:

p(xt = x|x0 = x′) =

√
λ

πΣ2

(
1− e−2λt

)−1/2

× exp

(
− λ

Σ2

(
x− x′e−λt

)2
(1− e−2λt)

)
(39)

What is needed however in our case, is p(xt = x|xT = 0)
for T ≥ t which is obtained from equation (39) as follows:

p(xt = x|xT = 0) = p(xT = 0|xt = x)
p(x)
p(0)

(40)

where p(x) is the probability density for x which is ob-
tained as a limit probability density form equation (39) as
t→∞:

p(x) =

√
λ

πΣ2
exp

(
− λ

Σ2
x2

)
. (41)

The final expression for the transition probability thus
reads:

p(xt = x|xT = 0) =

√
λ

πΣ2

(
1− e−2λ(T−t)

)−1/2

× exp

(
− λ

Σ2
x2 1(

1− e−2λ(T−t)
)) .

(42)

It has all the desired features needed. Using the following
representation of Dirac’s delta function:

lim
n→∞

ne−πn
2x2

= δ(x) (43)

one obtains both for the limit of infinitely rapid disap-
pearance of arbitrage returns

lim
λ/Σ2→∞

p(xt = x|xT = 0) = δ(x) (44)

and for the limit t → T of approaching the option’s time
of maturity

lim
t→T

p(xt = x|xT = 0) = δ(x). (45)

In both cases, one expects arbitrage returns to disappear.
Next, the average over virtual arbitrage returns in equa-
tion (25) is carried out explicitly for a European call option
(for V̄ = c̄) as

c̄(t, S, r0) = S

∫ ∞
−∞

dxN(d1)p(x(t) = x|x(T ) = 0)

−K
∫ ∞
−∞

dxP (t, T )N(d2)p(x(t)=x|x(T )=0)

(46)

and a European put option (for V̄ = p̄) as

p̄(t, S, r0) = K

∫ ∞
−∞

dxP (t, T )N(−d2)p(x(t)=x|x(T )=0)

− S
∫ ∞
−∞

dxN(−d1)p(x(t) = x|x(T ) = 0)

(47)

where P (t, T ) is given in equation (33). The integrations
with respect to x cannot be performed analytically. How-
ever, the integrands decrease sufficiently fast to zero as
x→ ±∞, so that a numerical integration can be be easily
performed.

It is obvious from intuition that the pricing formu-
las equations (46) and (47) contain the fundamental time
scale τarbitrage = 1/λ. In fact, one can introduce the fol-
lowing scaled variables:

u = λ(T − t) =
(T − t)
τarbitrage

rλ =
r

λ

xλ =
x

λ

σ̂λ =
σ̂√
λ

σλ =
σ√
λ

Σλ =
Σ

λ3/2
· (48)

Then λ can be eliminated from the pricing formulas. The
parameters in equation (30) can expressed in terms of the
scaled variables of equation (48):

d1 =
ln(S/K)− ln(P (u)) + σ̂2

λu/2
σ̂λ
√
u

d2 = d1 − σ̂λ
√
u

σ̂2
λ = σ2

λ +Σ2
λ

(
1− 2

u
tanh

(u
2

))
(49)

where P (u) is given by:

P (u) = P (t, T ) = exp
(
−
(
r0
λ −

1
2
Σ2
λ

)
u

− tanh
(u

2

) (
xλ +Σ2

λ

))
. (50)
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5 Replicating hedging strategies

The issue of hedging strategies in the virtual and the real
world mentioned above will now be addressed. The fact
that there is no instrument in the real world to hedge
intermediate arbitrage returns leads us to conjecture that
a hedging strategy might not be self-financing.

To be specific, let us denote a cash bond in our virtual
world as follows:

Bt = exp
(∫ t

0

dsrs

)
. (51)

It monitors the temporal evolution of the value of an ini-
tial cash deposit B0 = 1 which earns the instantaneous
interest rate rs. Let us further introduce the cash bond in
the real world

B0
t = exp(r0t) (52)

and as a further abbreviation (which may be termed the
“arbitrage bond”)

Bxt = exp
(∫ t

0

dsxs

)
. (53)

Evidently, one obtains:

Bt = B0
tB

x
t . (54)

Taking Bt for the moment as a real cash bond, a self-
financing strategy Vt consists of holding ϕt in the security
St and ψt in the cash bond Bt such that

Vt = ϕtSt + ψtBt ⇒ dVt = ϕtdSt + ψtdBt (55)

i.e. the value change dVt is only due to price changes dSt
and dBt. For our security price model with stochastic in-
terest rates in the virtual world, one can show that equa-
tion (55) holds [25]. Moreover VT = X , i.e. the value of
portfolio V equals the final payoff, i.e. it is replicating.
So in terms of our fictitious cash bond Bt there is a self-
financing, replicating strategy. In the real world, our strat-
egy will remain replicating by construction (see Eqs. (20)
to (25)). However, it will not be self-financing in terms of
the real cash bond B0

t and the security price St, as can be
seen by substituting for Bt in equation (55):

dVt = ϕtdSt + ψtd(B0
tB

x
t )

= ϕtdSt + ψtB
x
t dB

0
t + ψtB

0
t dBxt

= ϕtdSt + ψtB
x
t dB

0
t + ψtB

0
tB

x
t xtdt

= ϕtdSt + ψtB
x
t dB

0
t + (Vt − ϕtSt)xtdt. (56)

The last step was to replace ψtB0
tB

x
t = ψtBt by Vt−ϕtSt

using equation (55). The third term on the r.h.s of the
last line accounts for extra costs or gains due to arbi-
trage opportunities. It is exactly equal to the instanta-
neous (positive or negative) arbitrage return earned on
the delta hedge Vt − ϕtSt. In fact, one has ∆ = ϕt, and
therefore

Πt = Vt − ϕtSt (57)

where Πt is the delta hedge portfolio discussed in Sec-
tion 2. The replacement r → r0 + xt introduced by
Ilinski [10] gives rise to the same additional term in the
hedging strategy Vt, if one considers the change dΠt as
follows:

dΠt = (r0 + xt)Πtdt = r0Πtdt+ xtΠtdt. (58)

The second term on the r.h.s of this equation is the source
of additional intermediate profit and loss (p&l) during the
hedging process. Therefore, we conclude that the replace-
ment of Ilinski is completely equivalent to the introduction
of a fictitious cash bond Bt or likewise an interest rate rt
as defined above, which ensures a self-financing hedging
strategy in the virtual world.

The additional hedging costs or gains which arise in
the real world are covered by an additional premium con-
tained in the option price as obtained in equation (25)
(with respect to the Black-Scholes price). This premium
is positive in most cases as will be clarified below when
numerical examples are discussed.

Finally, let us further back up the interpretation of
(Vt − ϕtSt)xtdt as representing the differential p&l on
the hedging strategy within the time interval dt, using
the following argument (whose formulation is borrowed
from [14]). At time t, an option is sold at Ot in the real
world, and using the premium the following portfolio 〈Vt〉
is bought:

〈Vt〉 = 〈ϕt〉St + 〈ψtBxt 〉B0
t = Ot (59)

where 〈. . . 〉 corresponds to an average over all paths
{xs}s∈[t,T ]. Furthermore, the change in wealth of the op-
tion seller within the time interval [t, T ] in the real world
is given by:

∆W = Ot +
∫ T

t

〈ϕs〉dSs +
∫ T

t

〈Vs − ϕsSs〉r0ds

+
∫ T

t

〈Vs − ϕsSs〉xsds−X. (60)

The first term is the option premium earned, the second
term gives the cumulative gain by the trading the asset,
the third one corresponds to the cost/gain of the cash
bond position (used to finance the position in the asset or
set side as excess cash respectively) which is proportional
to the riskless rate r0, and the fourth term is supposed
to take into account the p&l due to virtual arbitrage. In
fact, the fourth term can be added to third term giving
an effective cost/gain of the cash bond position due to the
effective rate r0 +xt. Finally the last term is the potential
cash outflow due to the option’s payoff. Now using d〈Vt〉 =
〈ϕt〉dSt + 〈(Vt − ϕtSt)(r0 + xt)〉dt one shows that:

∆W = Ot +
∫ T

t

d〈Vs〉 −X = Ot − 〈VT 〉 − 〈Vt〉 −X = 0

(61)

as VT = X by construction. As ∆W vanishes identically,
∆W 2(t, S, r0) (where the average is taken as in equa-
tion (25)) vanishes as well which implies that no intrinsic
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risk remains over the remaining time to maturity of the
option, and therefore no risk-minimization is necessary.
The influence of virtual arbitrage is completely taken care
of by the option premium. We see also that our hedging
strategy in the real world is not self-financing at every
time step but is self-financing when the time integral over
remaining life time of the option is taken.

As discussed e.g. in [2], incomplete markets imply that
there is no unique equivalent martingale measure any
more. However, martingale theory may still be used if a
supplementary constraint is added (see the discussion pre-
sented in the introduction) which then selects a particular
martingale measure. In our case this choice has been im-
plicitly made when the arbitrage return becomes part of
a fictitious interest rate in the virtual world. In fact, both
local risk (expected conditional squared cost) and repli-
cation risk (expected squared deviation of the terminal
hedging portfolio to payoff) [3] are trivially minimized,
i.e. zero. A detailed comparison of our approach to in-
complete markets to the Föllmer-Schweizer approach [2]
certainly deserves further study.

6 Some numerical results

In the following, some results are presented for two market
situations, a rather incomplete market (Figs. 1 and 2) and
a fairly complete market (Figs. 3 and 4). In the first case,
the averaged prices c̄ (and p̄) , the Black-Scholes prices and
the payoff functions at maturity are given, for parameters
λ = 10, T − t = 0.8, Σ = 2, σ = 0.2, K = 100, r0 =
0.08. The unit of time is 1 year, so λ = 10 corresponds
to the rather long relaxation time τarbitrage of about 25
trading days, supposing a year of 250 trading days. Σ = 2
is inferred from a daily maximum variation of xt of about
20% in absolute value (at 95% confidence level) according
to the discretized Langevin equation:

∆x = xt+1 − xt = −λxt∆t+XΣ
√
∆t. (62)

The random variable X is standard normally distributed.
Taking ∆t = 1/250, X = 1.65 representing the two-sided
95% confidence interval, xt = 0 (as an initial value), one
concludes

Σ = 9.58∆x (63)

For various times to maturity T − t, Figures 3 and 4
presents differences of c̄ (and p̄) and the Black-Scholes
prices for the choice of parameters λ = 100, Σ = 0.4,
σ = 0.2, K = 100, r0 = 0.08. λ = 100 corresponds to a
relaxation time of 2 to 3 trading days, whereas Σ = 0.4
is inferred from a daily variation of xt of about 4% in
absolute value.

Let us now comment on the results. Focusing first on
the qualitative behavior, over a reasonable range of the
moneyness parameter m = S/K, the price of a European
call or put option (c̄ or p̄ respectively) under the influence
of virtual arbitrage is higher than the Black-Scholes value
(see Figs. 1 and 2). The difference is more pronounced at
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Fig. 1. The call option price as a function of moneyness m =
S/K (dashed curved line: with virtual arbitrage; solid line:
Black-Scholes formula). The dashed straight line is the payoff
function at maturity. Parameters: λ = 10, T − t = 0.8, Σ = 2,
σ = 0.2, K = 100, r0 = 0.08.
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Fig. 2. The put option price as a function of moneyness m =
S/K (dashed curved line: with virtual arbitrage; solid line:
Black-Scholes formula). The dashed straight line is the payoff
function at maturity. Parameters: see Figure 1.

the point of maximum curvature which is aroundm ' 1 or
below , whereas it decreases wheneverm < 1 orm > 1 (see
Figs. 3 and 4). For m� 1, the call option price is less than
the Black-Scholes value. As the time to expiry increases
the positive difference (except for m � 1) increases, and
the maximum difference is shifted to lower values of m.

Leaving aside for the moment the negative difference
appearing for call option at m� 1, it appears reasonable
that the existence of virtual arbitrage returns causes the
option price to be above the Black-Scholes value, as devi-
ations from equilibrium in general lead to an increase in
hedging costs, i.e. the costs for readjusting a replication
portfolio which is supposed to provide for the final payoff
of the option. This effect needs to be accounted for in the
option premium. The fact that the absolute difference to
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the Black-Scholes result is the largest at the point of max-
imum curvature of the pricing function is understandable
from the Γ (“gamma”) risk point of view. Γ denotes the
second derivative of the option price with respect the asset
price S and gives a measure for the non-linear dependence
of the option on the underlying asset. This non-linear risk
inherent to options can be only be hedged by buying or
selling other options. Any deviations from financial equi-
librium due to arbitrage opportunities will affect both the
option at hand and the options chosen for hedging. More-
over, the additional term arising in equation (56) leading
to intermediate p&l during the hedging process is propor-
tional to the delta hedge Vt−ϕtSt which is most relevant
at the point of maximum Γ where the delta hedge is insuf-
ficient. Therefore, these numerical results are completely
consistent with our mathematical discussion of the hedg-
ing strategy.

The influence of intermediate arbitrage returns grows
as the time to expiry of the option increases on the scale
of τarbitrage (see Figs. 3 and 4) (all other parameters being
constant). Several deviations from equilibrium during the
life time of an option seem to accumulate leading to a
higher additional risk premium on the option price.

Returning to the issue of the negative difference for
call options that are far in the money m� 1 in Figures 1
and 3, a possible explanation is an “overheated” market,
where deviations from equilibrium tend to relax from the
current asset price to a lower equilibrium price. This infor-
mation is accounted for by pricing the option at a discount
with respect to the Black-Scholes value at the current as-
set price: the market is expected to decrease to a lower
price level.

Considering the quantitative differences between c̄
(and p̄) and the Black-Scholes prices for calls and puts,
they are obviously more pronounced in an incomplete mar-
ket (Figs. 1 and 2), than in a rather complete market
where arbitrage returns are small and relax fast (3 and
4). The numerical analysis given here may be refined in
various ways (according to the parameter dependences of
the options prices) which is the subject of future work.

As opposed to our results, e.g. the first order correction
to the Black-Scholes prices for calls given in [10] increases
monotonously with moneyness m. Obviously, as our result
is based on the same model as in [10] (see Sect. 5) and
is exact (apart from the remaining integration over the
initial arbitrage), some error is made in the perturbative
treatment. Let us point out here again that the Ornstein-
Uhlenbeck dynamics of arbitrage returns used here and
the fact that the xt gives the extra return on the delta
hedge Vt − ϕtSt, it is quite reasonable that the difference
to the Black-Scholes price should show a maximum at the
price level where the delta hedge fails.

7 Conclusion

Using the (Ornstein-Uhlenbeck type) relaxational dynam-
ics for “virtual” arbitrage returns introduced in [10], we
have derived closed formulas for simple (“plain vanilla”)
European calls and puts in the presence of arbitrage op-
portunities appearing and disappearing on an intermedi-
ate time scale τarbitrage = 1/λ. This result which has not
been derived previously is obtained using martingale op-
tion pricing theory for incomplete markets (in the sense
of [2]), by making the arbitrage return process part of
an interest rate process in a virtual world. The influ-
ence on option prices in the real world (in the presence
of rapidly appearing and disappearing arbitrage opportu-
nities) is taken into account by summing over the initial
arbitrage return, and imposing the constraint that arbi-
trage is absent at the time of maturity of the option.

Comparing our work to [10,11], first, we consider the
analysis given above as conceptually more clear as to
where arbitrage-free pricing fails and where it does not.
Therefore, in the present work a different route has been
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proposed by introducing a second source of randomness
in the derivative pricing problem (apart from the secu-
rity S) right from the beginning. As a consequence, a two
variable version of Ito’s lemma must be used, giving a
PDE equation for the derivative price in a virtual world
which is finally summed over xt to yield the real world
price. Second, instead of making the constraint that ar-
bitrage return should vanish at maturity a part of the
payoff function in the virtual world as in [10], we enforce
it when the average over virtual arbitrage return is taken.
This procedure allows us to profit from Merton’s classi-
cal result on option pricing in a stochastic interest rate
environment [26] and to arrive at closed-form (up to a nu-
merical integration over the initial arbitrage return which
is easy to perform) pricing formulas for simple European
call and put options.

Furthermore it has been shown that any hedging strat-
egy will not be self-financing in the real world where
the arbitrage return is not directly observable. However,
on the average any intermediate costs arising during the
hedging process are covered by an additional premium
contained in the option price. In this sense, a hedging
strategy can be found that is self-financing in a time aver-
age sense, i.e. when summed over the remaing life-time of
the option. The derivation of pricing formulas rests cru-
cially on the selection of a specific measure from a set of
equivalent martingale measures that contains more than
one element, due to intermediate market incompleteness
which arises because of virtual arbitrage opportunities.

The present work may be extended in various direc-
tions. The relaxational dynamics of the arbitrage return
may be considered to be more complicated as proposed
here where it follows a simple Ornstein-Uhlenbeck process.
However, additional model parameters introduce more
sources of model error from the practitioner’s point of
view as each parameter has to calibrated to the market.
Furthermore, the constraint xT = 0, i.e. that arbitage
returns should disappear at the time of maturity of the
option, may be relaxed to allow for a hedging mismatch
at maturity. This amounts to give up the constraint that
the hedging strategy is replicating. The extension of this
work to the case of correlations between the asset price St
and the arbitrage return xt is under way. Certainly, the
comparison of the present model to stochastic volatility
models deserves further study.
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Appendix

Following [20] we propose to evaluate the expectation
value

I = EQ

[
e−

R T
t

dsxs |xt = x
]
. (A.1)

The expectation value can be stated in terms of a quotient
of path integrals as follows:

I =

R x(T )=0

x(t)=x
Dx(s) exp

�
− 1

2Σ2

R T
t

ds
�

dx(s)
ds +λx(s)

�2

−
R T
t

dsx(s)

�

R x(T )=0

x(t)=x
Dx(s) exp

�
− 1

2Σ2

R T
t

ds
�

dx(s)
ds +λx(s)

�2
�

=
X

Y
· (A.2)

Now the numerator and the denominator can be mapped
to the propagator of the harmonic oscillator in the pres-
ence of an external field, and can thus be evaluated [28].
The expression for the numerator reads as

X =

√
λ

2πΣ2 sinh(a(T − t))

× exp
(
Σ2

2λ3

(
e−λ(T−t) − 1 + λ(T − t)

)
− λ

2Σ2 sinh(λ(T − t))
(
x2 cosh(λ(T − t))

+ 2
(

eλ(T−t) − 1
)

(Cx+ C2)
)

+
λ

2Σ2
x2

)
(A.3)

where

C =
Σ2

2λ2

(
e−λ(T−t) − 1

)
. (A.4)

Likewise one obtains an expression for the denominator:

Y =

√
λ

2πΣ2 sinh(λ(T − t)

× exp
(

λ

2Σ2
x2− λ

2Σ2 sinh(λ(T − t))x
2 cosh(λ(T−t))

)
.

(A.5)

Calculating X/Y gives the result

I = exp
(
Σ2

2λ2
(T − t)− 1

λ
tanh

(
λ(T − t)

2

)(
x+

Σ2

λ2

))
(A.6)

which leads to equation (33).
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